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survClust*

• DNA Methylation
• mRNA expression
• miRNA expression
• Copy Number 
• Somatic Mutation
• Protein
• Mutation signature
• Single Cell Sequencing
• …

• Overall Survival (time-event)
• Progression Free Survival (time-event)

Motivation

*Arora A, Olshen AB, Seshan VE, and Shen R. Pan-cancer identification 
of clinically relevant genomic subtypes using outcome-weighted 
integrative clustering. Biorxiv

ulti- mics upervised ntegrated 
lustering or (MOSAIC)

• Response (categorical)
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MOSAIC 3-class vs simulated 
truth 

1 2 3 

1 100 0 0 

2 0 100 0 

3 0 0 100

unsupervised clustering vs 
simulated truth 

1 2 3 

1 68 0 0 

2 32 41 28 

3 0 59 72 

unsupervised vs supervised clustering via 
simulation

* Unsupervised clustering solution was arrived by running k-means algorithm 



MOSAIC Workflow

MOSAIC
Cluster membership with weighted 
outcome
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Various molecular platforms

Raw Data

Features

getDist

Weighted Distance Matrix

MOSAIC 3-class vs simulated 
truth 

1 2 3 

1 100 0 0 

2 0 100 0 

3 0 0 10

𝑰𝒘 =
σ𝑚=1
𝑀 𝑫𝒎

𝑀
Where,

𝑫𝒎 = weighted distance matrix of mth data type



Step 2- getDist

Where𝑾 is  a 𝑝 ×𝑝 diagonal weight matrix with 𝑾= 𝑑𝑖𝑎𝑔 {𝑤1,… , 𝑤𝑝}.

Consider a data type 𝑿𝒎 (where, m=1, .., M data types) of 

varying samples(𝑁𝑚) and features (𝑝𝑚)

𝒂𝒑 and 𝒃𝒑 are a pair of samples measured for 𝑝 features

𝑑𝑤 𝒂,𝒃 = 𝒂 − 𝒃 𝑻 𝑾 𝒂− 𝒃

𝑿′ = 𝑿 ∗ 𝑾 Τ1 2

𝑑𝑤 𝒂′,𝒃′ = 𝑑𝑤 𝒃′,𝒂′ = ෍

𝑗=1

𝑝

(𝑎𝑗
′ − 𝑏𝑗

′)2

References:
1. Xing, Eric P., et al. "Distance metric learning with application to clustering with side-information." Advances in neural information 

processing systems. 2003.

getDist

Weighted Distance Matrix

The weighted distance1–



Step 2- getDist– calculation of 
weights
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Where 𝑥𝑖𝑗𝑐, is the expression value of mth datatype for ith sample and jth feature 

𝜇𝑗𝑐 = mean of a feature j only considering samples belonging to cluster 𝑐, where 𝑐 =

1,2,3…𝑘 , 𝜎𝑗𝑐
2 = standard deviation  of a feature j only considering samples belonging to 

cluster 𝑐

𝜇𝑗= population mean, all samples across all clusters,, 𝜎𝑗
2= population standard deviation, 

considering all samples

𝑤𝑗𝑐 = log
൯𝑙 𝑥𝑖𝑗𝑐 𝜇𝑗𝑐,𝜎𝑗𝑐

2

൯𝑙 𝑥𝑖𝑗𝑐 𝜇𝑗,𝜎𝑗
2

𝑤𝑗 = max(𝑤𝑗1 ,𝑤𝑗2,… 𝑤𝑗𝑘)



Overfitting is avoided by cross-validation

fold1 fold2 fold3 fold4 fold5

Training data cluster labels Test labels 

Train Train Test 

Test 

Test 

Test 

Cross validated labels  

Concludes one round of cross-validation

• Perform 50 such rounds – with random 5 splits of the data
• Collect 50 cross validated survClust predicted class labels for 

each 𝑘 = 2 to 7

• We did 5-fold cross validation for 50 rounds of cross validation to arrive at a 
consolidated solution for a particular 𝑘 cluster

Dataset -



Why MOSAIC? 

• MOSAIC finds supervised clusters, with an out come of interest 
in mind. This is especially useful when correlation exists 
between various outcomes. 

• MOSAIC can run with missing data. However interpretations 
should be made carefully.

• MOSAIC reduces computation space from sample x feature to 
sample x sample

• Efficient in dealing with noisy features



scNMT seq Mouse gastrulation –
Input data 

#cells features missing

features 
missing >50% 

samples final features
final 

missing
acc_DHS 826 290 0.19 0 290 0.19
acc_p300 826 138 0.34 0 138 0.34
acc_cgi 826 4459 0.33 0 4459 0.33

acc_CTCF 826 898 0.37 0 898 0.37
acc_promoter 826 16518 0.28 0 5000 0.30

acc_genebody 826 17139 0.14 0 5000 0.24

met_DHS 826 66 0.24 3 63 0.22
met_p300 826 101 0.45 24 77 0.43

met_cgi 826 5536 0.42 511 5000 0.41
met_CTCF 826 175 0.48 51 124 0.46

met_promoter 826 12092 0.40 595 5000 0.42

met_genebody 826 15837 0.22 140 5000 0.24

rna 826 18345 0.00 0 5000 0.00



Results – MOSAIC with Stage 
MOSAIC was run on 13 data types wrt stage. For 5 folds and 50 rounds of CV. 

stage

E4.5 E5.5 E6.5 E7.5
104(12.59%) 108(13.08%) 271(32.81%) 343(41.53%)

A k was picked as follows –
• Highest adjusted Mutual Information (MI) 
• Lowest Standardized Pooled Within Sum of Squares (SPWSS)



MOSAIC on RNA data type with Stage

E4.5 E5.5 E6.5 E7.5 

1 0 24 45 6 

2 0 0 187 100 

3 104 0 0 0 

4 0 0 31 237 

5 0 84 8 0 

AMI = 0.55



RNA MOSAIC solution vs kmeans

E4.5 E5.5 E6.5 E7.5

1 0 0 30 228

2 3 7 74 20

3 58 0 0 0

4 0 77 125 89

5 43 24 42 6

AMI = 0.34, add AMI for lineage =0.51 

E4.5 E5.5 E6.5 E7.5 

1 0 24 45 6 

2 0 0 187 100 

3 104 0 0 0 

4 0 0 31 237 

5 0 84 8 0 

AMI = 0.55, AMI for lineage 0.56

Ectoderm Endoderm Epiblast
ExE_ecto

derm
Mesoder

m

Primitive
_endode

rm
Primitive
_Streak

Visceral_endod
erm NA

E4.5 0 0 60 0 0 43 0 0 1

E5.5 0 0 84 0 0 0 0 24 0

E6.5 0 0 146 8 28 0 43 45 1

E7.5 43 81 44 0 141 0 33 0 1



MOSAIC solutions for 
other data types

acc
met



Integrating 5 data types and stage as 
outcome 

Data type AMI Features

RNA 0.56 5000

met_promoter 0.49 5000

met_genebody 0.36 5000

met_cgi 0.32 5000

acc_DHS 0.29 290

Overlap between top 1000 genes



Integrating 5 data types and stage as 
outcome – AMI tracks close to rna



AMI = 0.33, lineage

Ectoderm Endoderm Epiblast
ExE_ecto

derm
Mesoder

m

Primitive
_endode

rm
Primitive
_Streak

Visceral_
endoder

m

1 43 75 185 0 169 0 75 0

2 0 0 89 0 0 0 1 0

3 0 6 0 8 0 0 0 66

4 0 0 60 0 0 43 0 3

AMI = 0.53, stage

E4.5 E5.5 E6.5 E7.5

1 0 1 211 337

2 0 83 7 0

3 1 22 52 6

4 103 2 1 0

AMI = 0.62, RNA k5 solution

rnak5 1 2 3 4 5

Integ 1 0 280 0 268 1

2 0 7 0 0 83

3 72 0 1 0 8

4 3 0 103 0 0

Integrated solution



Results – MOSAIC with Lineage 
MOSAIC was run on 13 data types wrt stage. For 5 folds and 50 rounds of CV. 

Ectoderm Endoderm Epiblast
ExE_ectode
rm

Mesoderm
Primitive_en
doderm

Primitive_S
treak

Visceral_end
oderm

<NA>

43(5.21%) 81(9.81%) 334(40.44%) 8(0.97%) 169(20.46%) 43(5.21%) 76(9.2%) 69(8.35%) 3(0.36%)

Ectoderm Endoderm Epiblast Mesoderm Primitive_Streak

43(6.12%) 81(11.52%) 334(47.51%) 169(24.04%) 76(10.81%)



Ectoderm Endoderm Epiblast Mesoderm Primitive_Streak

1 0 2 0 168 12

2 0 0 142 0 0

3 43 0 192 1 61

4 0 79 0 0 3

E4.5 E5.5 E6.5 E7.5

1 0 0 30 228

2 3 7 74 20

3 58 0 0 0

4 0 77 125 89

5 43 24 42 6

AMI for stage =0.34, add AMI for lineage =0.51 

AMI = 0.65, AMI with stage 0.48

RNA MOSAIC with lineage vs kmeans



MOSAIC on RNA data type with Lineage

1 2 3 4

Ectoderm 0 0 43 0

Endoderm 2 0 0 79

Epiblast 0 142 192 0

Mesoderm 168 0 1 0

Primitive_Streak 12 0 61 3



Conclusions
• MOSAIC finds supervised clusters, with an out come of interest in mind. 

Where kmeans might give mixed results. Supervised clustering is much 
more efficient and helps in sorting out different signals 

• Integration of different data modalities with missing data

• MOSAIC is available on GitHub -

Future Work:
• Imputation of missing data – area where a lot of research has been done. 

• In scNMT mouse data, stages have a temporal relationship, perhaps model 
ordinal relationship. 

• Joint modeling of stage and lineage

• Integrated solution can be further improved
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