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Motivation

. TCGA generated multidimensional omics data across 10,000 tumors across
33 tumor types

« The main TCGA studies primarily focused on molecular subtype analysis
using unsupervised clustering

. We aim to develop a supervised learning approach for patient outcome
weighted stratification
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*  DNA Methylation *  Overall Survival
*  mRNA expression . Progression Free Survival
*  miRNA expression *  Response (future work)
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*  Somatic Mutation
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. Mutation signature

*  Single Cell Sequencing

Memorial Sloan Kettering
su PVC 1 us t Cancer Center



unsupervised vs supervised clustering via

Typical data set
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* Unsupervised clustering solution was arrived by running k-means algorithm
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survClust Workflow

Raw Data getDist combineDist survClust

Cluster membership with survival

i Weighted Distance Matrix Integrated Distance Matrix .
Various molecular platforms g g difference

survClust solution (k=4)
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Step 1 — prepare input data

Raw Data

Various molecular platforms

Features
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Continuous data should be standardized across features (columns)

* This ensure that weights are interpretable.
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Step 2- getDist
getDist Consider a data type X,,, (where, m=1, .., M data types) of

Weighted Distance Matrix varying samples(N,,) and features (p;,)
a, and by, are a pair of samples measured for p features

The weighted distance! -

dy(a,b) = {(a— b)T W(a— b)
X' =X wt/?

p
d,(a,b) = d,(b,a’) = z(aj' — b)?
j=1
* respectively, Wis a pXp diagonal weight matrix with W = diag {w, ..., wp}.

* The scaling factor or weights w,, are obtained by fitting a univariate cox proportional model for each p —
h(tlx;) = h, xexp(x] = B)

where j is the jth feature from 1 ... p features. t represents the survival time, h(t) is the hazard function
determined by p covariate, coefficient § determines the impact of covariate also known as wy,, and h,, is
defined as baseline hazard.
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Integrate and perform survClust

combineDist

Integrated Weighted Distance
Matrix

_ Ym=1Dm
="

Where,
D,,, = weighted distance matrix of mth data type
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survClust then projects the integrated and
weighted distance matrix in a lower
dimensional space via multidimensional
scaling and clustering sample points into
subgroups via the K-means algorithm.
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Overfitting is avoided by cross-validation

* We did 5-fold cross validation for 50 rounds of cross validation to arrive at a
consolidated solution for a particular k cluster

Dataset -
fold1 fold2 fold3 fold4 fold5

[ Training data cluster labels [ Testlabels |
[ Train | Test [ Train |

[ Cross validated labels

Concludes one round of cross-validation

* Perform 50 such rounds — with random 5 splits of the data
* Collect 50 cross validated survClust predicted class labels for
eachk=2to7
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An example of cross validation and
how to pick k
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Mutation based stratification using survClust in
TCGA datasets
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Bladder Cancer (BLCA) A circomap showing survClust identified TMB patterns across
BLCA, Mutation, 3-cluster solution cancer types
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Integrative analysis of multiple platforms

survClust was run on each of the available 6 molecular platforms on each cancer type —
Mutation, copy number, DNA Methylation, mRNA expression, miRNA expression and protein assay

(RPPA), and integrating all 6.
Adjusted Rand Index

BLCA
a
Mut 1
o |
™
CN il 0
0 _|
< (qV]
s Meth 1 021 0.01
S
%o 8 ] Color Key
- ~ RPPA 1 0.11 0.03 0
c w0 _| 26
'E o 0.2 0.8
b o] miRNA 1 0.08 0.1 0.04 0.01 ' '
V o _| Value
E ~—
mRNA 1 015 021 0.11 0.04 0.01 —¥— CN
i — —%- miRNA
il 0.39 0.26 0.25 0.19 0.18 0.03 gt
Int . : . . : : —%— RPPA
o R —%— mrna
T T T I T T T X X meth
S &F &F & NS .
2 3 4 k 5 6 7 8 &Qﬁ ((\\Qﬁ Q?Q Q@ o —¥— integrated
CESC HNSC KIRP UCEC
c d e
o |
@ o
o = wuJ !
o e
[qV]
3 g fr Tt
o [e] <
N
2 - 8 -
o) o
v L T~
o | o | ﬁ
o S I
0 & S S /—"ﬁkr”*
o o o ¥
) J ' ! ) T T T T T T T T T T T T T T T T T T T T T
4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8

$ Memorial Sloan Kettering
o, ) Cancer Center



Integrated solution identified by survClust on
TCGA BLCA cohort
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Conclusion

* Developed a supervised learning approach for survival outcome-weighted molecular
stratification

* Application to somatic mutation data led to stratifications associated with mutational
burden and hyper-mutation signatures corresponding to distinct mutagenic processes

* The integration of multiple data platforms led to more refined outcome stratifications
than individual platform derived clustering results in the majority of the cancer types in
our analysis

* Developed annotation tools (circomap, panelmap) to visualize the association of

molecular and clinical information with the subtypes
R package panelmap and function circomap — WI o

found here — https://github.com/arorarshi/panelmap

_—
/\\’ -

* survClust — developmental version
Happy to talk! - email — arshiaurora@gmail.com

check my Github repository when it’s published!
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