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Motivation
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• TCGA generated multidimensional omics data across 10,000 tumors across 
33 tumor types

• The main TCGA studies primarily focused on molecular subtype analysis 
using unsupervised clustering

• We aim to develop a supervised learning approach for patient outcome 
weighted stratification
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survClust

• DNA Methylation
• mRNA expression
• miRNA expression
• Copy Number 
• Somatic Mutation
• Protein
• Mutation signature
• Single Cell Sequencing
• …

• Overall Survival
• Progression Free Survival
• Response (future work) 

survClust



unsupervised vs supervised clustering via 
simulation
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* Unsupervised clustering solution was arrived by running k-means algorithm 
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survClust Workflow
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Step 1 – prepare input data

• Continuous data should be standardized across features (columns)

• This ensure that weights are interpretable. 
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Step 2- getDist

• respectively, 𝑾 is  a 𝑝×𝑝 diagonal weight matrix with 𝑾 = 𝑑𝑖𝑎𝑔 {𝑤!, … , 𝑤"}.

• The scaling factor or weights 𝑤" are obtained by fitting a univariate cox proportional model for each 𝑝 –

ℎ 𝑡|𝒙𝒋 = ℎ$ ×exp 𝒙𝒋𝑻 ∗ 𝛽

where 𝑗 is the jth feature from 1…𝑝 features.  𝑡 represents the survival time, ℎ(𝑡) is the hazard function 
determined by 𝑝 covariate, coefficient 𝛽 determines the impact of covariate also known as 𝑤", and ℎ$ is 
defined as baseline hazard. 

Consider a data type 𝑿𝒎 (where, m=1, .., M data types) of 
varying samples(𝑁") and features (𝑝")
𝒂𝒑 and 𝒃𝒑 are a pair of samples measured for 𝑝 features

The weighted distance1 –

𝑑! 𝒂, 𝒃 = 𝒂 − 𝒃 𝑻𝑾 𝒂− 𝒃
𝑿# = 𝑿 ∗ 𝑾 ⁄% &

𝑑& 𝒂′, 𝒃′ = 𝑑& 𝒃′, 𝒂′ = >
'(!

"

(𝑎') − 𝑏'
))*

References:
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Integrate and perform survClust

survClust
Cluster membership with survival difference

combineDist

Integrated Weighted Distance 
Matrix

𝑰𝒘 =
∑"%&' 𝑫𝒎

𝑀
Where,
𝑫𝒎 = weighted distance matrix of mth data type

survClust then projects the integrated and 
weighted distance matrix in a lower 
dimensional space via multidimensional 
scaling and clustering sample points into 
subgroups via the K-means algorithm.



Overfitting is avoided by cross-validation

fold1 fold2 fold3 fold4 fold5
Training data cluster labels Test labels 

Train Train Test 

Test 

Test 

Test 

Cross validated labels  

Concludes one round of cross-validation

• Perform 50 such rounds – with random 5 splits of the data
• Collect 50 cross validated survClust predicted class labels for 

each 𝑘 = 2 to 7

• We did 5-fold cross validation for 50 rounds of cross validation to arrive at a 
consolidated solution for a particular 𝑘 cluster

Dataset -
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An example of cross validation and 
how to pick k 

simulate two data types –
data type 1
strong clusters, weak survival association

data type 2 –
weak clusters, strong survival association
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Mutation based stratification using survClust in 
TCGA datasets 

a Bladder Cancer (BLCA)
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Integrative analysis of multiple platforms
survClust was run on each of the available 6 molecular platforms on each cancer type –
Mutation, copy number, DNA Methylation, mRNA expression, miRNA expression and protein assay 
(RPPA), and integrating all 6. 
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Integrated solution identified by survClust on 
TCGA BLCA cohort  
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Conclusion
• Developed a supervised learning approach for survival outcome-weighted molecular 

stratification

• Application to somatic mutation data led to stratifications associated with mutational 
burden and hyper-mutation signatures corresponding to distinct mutagenic processes

• The integration of multiple data platforms led to more refined outcome stratifications 
than individual platform derived clustering results in the majority of the cancer types in 
our analysis

• Developed annotation tools (circomap, panelmap) to visualize the association of 
molecular and clinical information with the subtypes

R package panelmap and function circomap –
found here – https://github.com/arorarshi/panelmap

• survClust – developmental version 
Happy to talk! - email – arshiaurora@gmail.com
check my Github repository when it’s published!

https://github.com/arorarshi/panelmap
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Thank you! 


